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SUMMARY 

The compressive s t r e s s  f o r  buckling i s  calculated f o r  a rectangular  
f l a t  sandwich p l a t e  with loaded edges simply supported and unloaded edges 
r i g i d l y  clamped. I n  t h e  calculat ions Hoff 's  d i f f e r e n t i a l  equations are 
in tegra ted  by Leggett 's  method i n  order t o  obtain lower bounds and by 
Gclerkin's  method t o  e s t a b l i s h  upper bounds. 
buckling stress a r e  estimated as t h e  ar i thmetic  means of these bounds 
and a r e  presented i n  a diagram which covers the e n t i r e  p r a c t i c a l  range 
of the  geometric and mechanical quant i t ies  involved. The t h e o r e t i c a l  
r e s u l t s  a r e  i n  s a t i s f a c t o r y  agreement with r e s u l t s  of t e s t s  c a r r i e d  out 
a t  t h e  Forest  Products Laboratory. 

The t r u e  values of t h e  

INTRODUCTION 

The expression "sandwich plate"  designates a composite p l a t e  con- 
s i s t i n g  of two t h i n  faces  and a thick core. I n  a i rplane construction 
t h e  faces  are usual ly  of aluminum a l loy  and t h e  core i s  of some l i g h t -  
weight material such as an expanded p l a s t i c  o r  b a l s a  wood. In  the  
l a t t e r  case t h e  f i b e r s  of the  wood are, i n  general, arranged perpen- 
d i c u l a r l y  t o  the  plane of the p la te .  
of such a core i n  the plane of the p la te  i s  about one-thousandth of 
t h a t  of the  faces ,  t h e  normal s t resses  i n  the  core a r e  of l i t t l e  impor- 
tance i n  r e s i s t i n g  bending moments even though the  usual r a t i o  of face  
thickness t o  core thickness is between one-tenth and one-hundredth. On 
the  other  hand, the  core performs a task  i n  t ransmit t ing shear forces  
and undergoes considerable shearing deformations because i t s  modulus 
of shear i s  low. Hence shearing deformations must not be disregarded 
i n  the  analysis  of sandwich plates .  

Since t h e  modulus of e l a s t i c i t y  

. 
I n  an e a r l i e r  paper (reference 1) d i f f e r e n t i a l  equations were 

derived f o r  rectangular sandwich p la tes  subjected t o  transverse and 
edgewise loading and i n  the  derivation t h e  f i n i t e  bending r i g i d i t y  of 
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t h e  individual  faces  was duly considered, The d i f f e r e n t i a l  equations 
were 
edges when a l l  four  edges of t h e  p l a t e  were simply supported, and the  
buckling s t r e s s e s  obtained were presented i n  diagrams. I n  the  present  
repor t  t h i s  work i s  continued and buckling stresses a r e  ca lcu la ted  f o r  
compressive loads ac t ing  perpendicular t o  one p a i r  of edges when t h e  
loaded edges a re  simply supported and t h e  unloaded edges r i g i d l y  clamped. 
In order t o  obta in  a c lose  approximation t o  t h e  t r u e  values of t he  
buckling stress and t o  e s t a b l i s h  r igorously the  accuracy of t h e  solu- 
t i on ,  both lower and upper bounds were determined f o r  t he  buckling 
s t r e s s .  
by Galerkin' s method. 

integrated f o r  compressive loading perpendicular t o  one p a i r  of 1 

The former were obtained by Legget t ' s  approach and t h e  l a t t e r  

Although the  ca lcu la t ions  are somewhat complex, t he  f i n a l  r e s u l t s  

The few simple formulas needed i n  conjunction with the  
a r e  presented i n  a diagram ( f i g .  7)  which can be used e a s i l y  by t h e  a i r -  
plane designer. 
diagram are co l lec ted  and t h e i r  use is  shown under t h e  heading 
"Numerical Examples. 'I 

The ca lcu la t ions  presented here were ca r r i ed  out a t  t h e  Polytechnic 
I n s t i t u t e  of Brooklyn under the  spor-sorship and with the  f i n a n c i a l  a i d  
of t he  National Advisory Committee for Aeronautics. 

.. 
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SYMBOLS 

b d  parameters depending on geometry and e l a s t i c  proper t ies  ao, 0' 0 
of sa.ndwich p l a t e  a.nd on n 

C core thickness,  inches 

C c r i t i c a l  s t r e s s  f a c t o r  

D bending r i g i d i t y  of t h i n  pla.te,  pound-inches squared 
per  inch 

DO bending r i g i d i t y  of sandwich p l a t e ,  pound-inches squared 
per  inch 

E Young' s modulus 

F form f a c t o r  of sandwich p l a t e  

G shear modulus of face,  p s i  
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GC shear modulus of core, psi 

k 

kS 

reciprocal of aspect ratio of sandwich plate (Lx/$) 

eigenvalues for vibration of a beam 

edge lengths of sandwich plate, inches %,% 
n number of half waves in direction of loading 

parameters depending on elastic properties of sandwich 
plate 

R1 ,R2 

R sandwich stiffness parameter 

r = c/t 

t face thickness, inches 

U,V,W components of displacements in direction of x-, y-, 
and z-axes, respectively 

X,Y,Z rectangular coordinates 

Y 

YO 

compressive edge load in direction of y-axis, pounds 
per inch 

nondimensional form of compressive edge load in direc- 
tion of y-axis 

%ln Kronecker delta 

a La,placian operator 

t , v , f  nondimensional coordinate axes 

f = 25 - 1) 

CI Poisson's ratio 

'cr, o buckling stress of two independent faces, psi 
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buckling s t r e s s  of sandwich p l a t e ,  p s i  'c r 

parameters depending on e la . s t ic  proper t ies  of sandwich 
p l a t e  )L2 

X = 4Fc 

SOLUTION BY LEGGXTT'S METHOD 

Figure 1 shows the  sandwich p l a t e  and i t s  loading. The equilibrium 
conditions of t he  pla.te were derived i n  reference 1 from t h e  e s s e n t i a l  
p a r t s  of the  s t r a i n  energy and the  p o t e n t i a l  of the  ex te rna l  loads with 
t h e  a i d  of t he  pr inc ip le  of v i r t u a l  displacements. 
i n  t h e  following form: 

They can be given 

E t  
+ wx) = 0 (1) - 

1 - C I  

2Gcc 

c + t  
E t 3  A% - -(% + vy) + YwYy - GCc AW = 0 (3 )  

where u, v, and w are disphcements i n  the  x-, y-, and z-direct ions,  
respect ively,  of po in ts  i n  the  middle plane of t h e  upper face  p l a t e  of 
the  sandwich, while those i n  the  lower face  are -u, -v, and w, as 
shown i n  f igures  2 and 3. The subscr ip ts  x and y denote d i f f e r -  
e n t i a t i o n  with respect  t o  t h e  coordinates x and y. Since a r igh t -  
hand coordinate system is  used i n  t h i s  repor t ,  t he  s igns of t h e  l a s t  
term i n  the first two equations and the second term of t he  t h i r d  equa- 
t i o n  a re  opposite t o  those given i n  reference l. 

-5 

For a sandwich p l a t e  simply supported a.t  t he  two loaded edges 
and y = 5 and clamped a t  the  edges x = 0 and x = t he  bounda.ry 

conditions are:  

y = 0 

4 



NACA TN 2556 

u = o  a t  a l l  four  edges 

v = o  a t  x = 0,h 

vy + p s  = 0 a t  y = O,% 

wx = 0 a t  x = 0,L 

wyy = 0 a t  y = O,% 

w = o  a t  a l l  four  edges 

If the  new var iab les  

a.re introduced and the  notat ion 

c + t  Y o = - L 2  Y co = - - 
r, 2D X R 2  - R 1  = - 

DO 

is  used where 

E t ( c  + t )2  Do = 

2 b  - P2) 

E t 3  D =  
12(1 - p2) 

equations (1) , (2 )  , and (3)  can be wr i t t en  i n  the  following nondimen- 
s i o n a l  form: 

(7 1 o e  
-PEE + (1 - p)k 2 y11,, + (1 + p)kv + 2 R 1 u  + R 1 c  w = 0 ( 5 )  
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The so lu t ion  may be assumed t o  have t h e  form: 

00 

u = F,(O s i n  n q  
n= l  

w => %(E.) s i n  n q  
n = l  

These funct ions s a t i s f y  a.11 the  boundary conditions if 

Inse r t ion  of u, v, and w i n to  equations ( 5 ) ,  ( 6 ) ,  and (7 )  yields: 
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I -  

( kn)2fi2kkn)2n2 + R2 - Yo H,(t = 0 1 
These three ordinary simultaneous d i f f e r e n t i a l  equations can be 

solved exact ly ,  bu t  t he  algebra.ic manipulations become so cumbersome 
t h a t  an approximate mthod is preferable.  
gested by Leggett ( reference 2 ) ,  and was appl ied by Smith (reference 3) 
f o r  t h e  ca lcu la t ion  of buckling loads of plywaod p la t e s .  

The method used here was sug- 

The method cons is t s  i n  expressing t h e  deriva.t ive of highest  order 
by means of a Fourier s e r i e s ,  and then in t eg ra t ing  the  s e r i e s  %'"' (E)  

t e r m  by t e r m :  
* 

00 

03 

q ' * t (  E )  = ( -1)Am(mn)3  cos mnE + 6A 
m = l  

. 

. 

W 

Hn"( E )  = (-1)Am(m)2 s i n  mn5 + 6A5 + 2B 
m = l  

% ' ( E )  =r Am(m) cos mfit + 3A5 2 + 2EiE + C 

m = l  

03 

Hn(S)  = pfn s i n  msrE + AE3 + BE2 + CE + D 
m = l  
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The a r b i t r a r y  constants A ,  B, C ,  and D are determined from t h e  
boundary conditions (equation (11) ) : 

A = - x r  m A m F  + (-l)m] 
m = l  

B = n f m A , k  t (-1)q 
m = l  

03 

c = -.Edm 
m = l  

. 
I 

D = O  (163) 

Upon subs t i t u t ion  of t h e  expressions f o r  H n ' (  5 )  and Hn( e )  from equa- 
t i o n s  ( l5d)  and ( l ? e ) ,  equations (12 )  and (13) become: I- 

(18) 

where 
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The so lu t ion  of equations (17)  and (18) can be obtained by adding 
together  t he  complementary and par t icu lar  i n t eg ra l s ,  
equations are 

The homogeneous 

F,"(s) - KlFn(S) - %G,'(S)  = o ( 17a 

Fn'(S + KkGn"(S) - %Gn(S ) = 0 ( 18a ) 

and the  complementary so lu t ion  may be assumed i n  the  form 

Fn(S ) = B l e  YS Gn(E = Cle YS 

where t h e  values of 7 
following determinant: 

are t o  be determined from the  vanishing of t h e  

= o  

Solut ion of t h i s  determinant a f t e r  subs t i tu t ion  of t he  values of 
Q, K4, and 5 yields:  

K1, 

2 2 2  2R1 Yl = (kn)  J[ + - 
1 - C I  

( 2 0 )  y2, = (kn)  2 2  II + R1 

Hence t h e  complementary so lu t ion  i s  

-Y1S -Y2E Fn( e )  = BleY1' + B2e + + Bj+e 
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where the coef f ic ien ts  B a.nd C are not independent, but  s a t i s f y  
the  rela. t ions 

The p a r t i c u l a r  integra.1 of equations (17) and (13) may be assumed 
i n  t h e  form 

m = l  

where, a f t e r  s e t t i n g  (Rlc0/2) = p 

1 ~ 5 ~  + I ~ S ~  + 1 ~ 5  + 

t h e  coe f f i c i en t s  are found t o  be 

E1 = -3pA/y2 2 

E2 = - 2 p B l ~ ~ ~  

6PA - pc 
E 3 = - -  2 

724 72 
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knJrpE 2 knnp2B 12 = 

y22 
2 

6knfipA 
4 

- knpd3 - knnpC 
I 3 = - - -  

722 72 

Q2 72 

knPa2  2knnpB 
-7 14 = 

From equa.tions (21)  and ( 2 2 ) ,  the general  so lu t ion  of t he  d i f -  
f e r e n t i a l  equations (17) a.nd (18) i s  

F , ( E )  = D1 cosh y,! + D2 s inh  Y,S + D3 cash Y 2 E  + D 4  Sinh Y2e  + 

f fm cos mnS + EIE 2 + E26 + E; 

m = l  

71 
Gn(!) = -(D2 cosh ylE + D1 sinh y16) + cash 725 + 

knx 

where D1, D2, D3, and D4 are a rb i t r a ry  constants which can be 

determined from t h e  remaining f o u r  boundary conditions (9 )  and (10):  

{L(cosh yl - cosh y2)Z1 - [inh y1 - 7172 

Dl = z knn (kn)2n2 
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D2 = L l c o s h  Z yl - cosh 72 

and 

m = l  

% =  

Thus 
e n t i a 1  equations (12) and (13) and a l l  the  boundary conditions formulated 
i n  equations (g), (lo), and (11). It remains t o  s a t i s f y  equation (14) by 

and Hn(!.) are expanded i n  s ine  se r i e s .  The series are inser ted  i n t o  
equation (14 )  and the  sums of the  coe f f i c i en t s  of l i k e  terms are equated 
t o  zero. 
i n f i n i t e  i n  number and l i n e a r  i n  t h e  constants  AlY A2 . . . is 
obtained. 
vanishes. This  condition permits t he  ca lcu la t ion  of t he  c r i t i c a l  load. 
Since the determinant i s  of i n f i n i t e  order,  successive approximations 
t o  t h e  c r i t i c a l  load can be obtained by solving subdeterminants of 

t h e  assumed functions.  To t h i s  end Fn ' (k) ,  Gn((), %"l'(k), HJE), 

I n  t h i s  manner a system of homogeneous algebraic  equations 

The equations y i e ld  n o n t r i v i a l  so lu t ions  if  t h e i r  determinant 

-., 

..I 
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increasing order.  
c r i t i c a l  values which approach the  exact va.lue from below. 
Leggett 's  method gives a lower bound f o r  t h e  c r i t i c a l  load. 

It i s  shown i n  appendix A t h a t  t h i s  process y i e lds  
Hence 

The ca lcu la t ions  are ca r r i ed  out with the  a i d  of the  following 
expans ions : 

(-1)'s 
s inh  yie = -2n s inh  Ti s i n  SIIE 

where i = 1, 2 a.nd 

- s i n  sne 
n S 

s=l 

8=1 

Next t h e  following notat ion is introduced: 

X = YO/fi2 = YcrLx2/2n2D = 4acr/o,r,0 J 
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and 

'cr, o = n2Et2/3(1 - p 2 ) q  

The requirement t h a t  t he  sums of t h e  coe f f i c i en t s  of l ike terms 
vanish yields t h e  following l i n e a r  equation: 

(kn)2 + s2 - 
(kn)2 + X1 + s2 

(kn)2kkn)2  + k d  + X1s 2 

!!?& f i - l ) s 3 A  - - (-l)q} B + 
( 4 3  + XJ2 

{kkn)2 + d k k n ) 2  + s 3  + (kn)2(s2 - L)} {As + *[-1)'Y SIT) - 

s = 1 , 2 , .  . . 
where 

(-1)'% - - ( - 1 ) y B  = -6fi(2Ag + 4A4 + . . . + M 2 m  + ->  
when s = 2m, m = 1, 2, 3 

+ 3 3  + . . . + (a - 1 ) A a - 1  + . . .1 
when s = 2m - 1, m = 1, 2 

. 
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c 

cosh 

cosh 72 s i n h  
= 72 [2(sinh 1 

1 J sinh '1 
s i n h  rl 1 72x 1 

When y l  a.nd y 2  are large, so t h a t  s inh  y l Z  cosh y l  and 
s inh  y2 z cosh 72, equation (26) can be s implif ied t o  obtain:  

y1y2 1 J 
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where 

It can be seen t h a t  equation (25) represents  two independent 
systems of l i n e a r ,  homogeneous, a lgebraic  equations i n  As. While t h e  
system corresponding t o  t h e  odd numbers s = 2m - 1 with m = 1, 2, . . . 
represents  symnetrical buckling, t he  system corresponding t o  t h e  even 
numbers s = 2m governs antisymmetrical buckling. 

NUMERICAL EVALUATION OF FBSULTS OBTAINED 

BY LEGGETT'S METHOD 

The homogeneous set of l i n e a r  equations derived i n  the  preceding 
sec t ion  was solved numerically f o r  many d i f f e r e n t  values of the geometric 
and mechanical quan t i t i e s  involved. A s  t he  minimum value of t h e  buckling 
stress obtains when t h e  buckling i s  symmetric, only odd values had t o  be 
a t t r i b u t e d  t o .  s .  The f irst  approximation t o  t h e  t r u e  value was cal-  
culated by assuming t h a t  the  def lected shape could be represented by a 
polynomial and a s ing le  s ine  funct ion of the coordinate 5 ( o r  x )  and 
by considering n a given constant. The t ransverse def lec t ions  are 
then given by 

.y 

which obviously s a t i s f i e s  t he  boundary conditions.  The set of equations 
represented by equation (25) cons is t s  of a s ingle  equation i n  t h i s  case,  
and t h e  compressive stress corresponding t o  the  nontrivia.1 so lu t ion  of 
t h i s  equation is the  buckling s t r e s s .  

In  the second approximation two terms of t he  s ine  s e r i e s  were con- 
sidered. Equations ( 8 c ) ,  (l?e), and (16) yielded t h e  following expres- 
s ion  f o r  the def lected shape: 

w = El s i n  fi5 + A 3  s i n  3115 + ,(A1 + 3 A 3 ) ( ~ ~  - 6 ,] s i n  n q  
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This equation again s a t i s f i e s  a l l  the boundary conditions. 
y ie lds  two simultaneous equations i n  t h i s  case, one f o r  s = 1, and t h e  
second f o r  s = 3. The value of the compressive stress t h a t  makes t h e  
determinant of the  two equations vanish is  the  buckling stress. It is  
well  t o  remember, however, t h a t  equation (23) w a s  obtained a f te r  a l l  
functions appearing i n  the  solut ion were expanded i n  Fourier s e r i e s .  
The f i r s t  s ingle  term, or the  first two terms, of these s e r i e s  do not 
s a t i s f y  the  boundary conditions rigorously, and f o r  t h i s  reason t h e  
c r i t i c a l  stress calculated from t h e  equations is  only approximate. It 
i s  shown i n  appendix A t h a t  t h e  value obtained i n  t h i s  process is  always 
smaller than the t r u e  buckling stress. 

Equation ( 2 5 )  

It w a s  found convenient t o  define the  following nondimensional 
parameters: 

7 0  
R = G J F L T ~ ~  

r = c / t  
1 
J F = 1 + 3(1 + r )2  

If they  a r e  used, equations (24)  can be w r i t t e n  as 

"2 = 2rFR J 
The buckling stress of the sandyich p l a t e  w a s  given i n  the  form 

which equa.tion i m p l i c i t l y  defines the c r i t i c a l  s t r e s s  f a c t o r  C. 

I n  f igure  4, by way of example, t h e  values of C a r e  p l o t t e d  
against  t h e  p l a t e  aspect r a t i o  %/Lx for t h e  f ixed  values r = 39 
and R = 0.3. Different choices of n give d i f f e r e n t  c r i t i c a l  s t r e s s e s  
a.nd, as with homogeneous p la tes ,  the value of n yielding t h e  smallest  
c r i t i c a l  s t r e s s  i s  the  only one of p r a c t i c a l  importance. The curves 
Obtained from the  f i rs t  and second approximations do not d i f f e r  much 
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and f o r  t h i s  reason it w a s  not considered necessary t o  ca l cu la t e  a t h i r d  
approximation. %/Lx, 
say  above 2, t he  aspect r a t i o  has l i t t l e  influence upon t h e  buckling 
stress. In  t h i s  range it is permissible,  therefore ,  t o  use t h e  minimum 
value of C which, incidental ly ,  i s  independent of n. 

It can a l so  be seen t h a t  f o r  la rge  values of 
L 

The minimum values of t he  c r i t i c a l  s t r e s s  f a c t o r  are shown i n  f i g -  
ure ?. The abscissa  is r = c / t  and t h e  parameter of t h e  family of 
curves i s  t h e  r a t i o  A s  t h e  values of t h i s  parameter 
range f rom 0 t o  w, and c / t  ranges from 0 t o  100, a l l  possible  sand- 
wich panels are covered i n  t h e  diagram. 

R = G,/FU,,,~. 

I n  the l imi t ing  case of a homogeneous panel, t h a t  i s ,  when t h e  
value of R approaches i n f i n i t y ,  t he  c r i t i c a l  stress f a c t o r  becomes 
6.98/4 = 1.745. 

The reduction of r e s u l t s  obtained by the  Leggett method t o  a t h i n  
' homogeneous p l a t e  i s  given i n  appendix B. It w a s  s t a t e d  e a r l i e r  t h a t  

Leggett 's  method y ie lds  lower bounds f o r  t h e  buckling s t r e s s .  
es t imate  o f  t h e  t r u e  values of t he  buckling stress can be had if upper 
bounds are a l s o  establ ished.  For t h i s  reason a d i f f e r e n t  so lu t ion  of 
t he  problem i s  given i n  t h e  next sec t ion  i n  which Galerkin 's  method is  
used i n  the calculat ions.  

A b e t t e r  

SOLUTION BY GAURKIN'S METHOD 

I n  applying Galerkin' s method t o  t h i s  problem ( see  appendix C )  , it 
i s  convenient t o  introduce the  var iable  
r e l a t i o n :  

5 by means of t he  following 

5 = 2 5  - 1 

This means t h a t  t h e  o r ig in  of coordinates i s  placed a t  the  geometric 
center  of t h e  sandwich p la te .  The d i f f e r e n t i a l  equations (12 ) ,  (l3), 
and (14) become 

- -  F " ( ( )  + 
2 ?  ll 
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* 
and t h e  boundary conditions become: 

H,(() = H~'([) = o a t  [ = 1, -1 (38) 

The so lu t ion  of t he  d i f f e r e n t i a l  equations ca.n be assumed as:  

FJC)  = )- A, sir! m n c  
m=1,2,. . . 
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- 
2 

Each individual t e r m  of the  series satisfies a l l  t he  required boundary 
conditions provided the  functions % ( e )  
of vibrat ion o f  a beam clamped a t  both ends (see appendix D ) .  Because 
of t h e  orthogonality of the  tr igonometric and the  normal funct ions cp 
(see equations ( D ? ) ,  ( D 6 ) ,  and ( D 7 )  of appendix D )  t he  symmetrical and 
antisymmetrical buckling modes can be considered separately.  Since the  
lowest mode of buckling i s  symmetrical, H n ( O  and G n ( O  were assumed 
symmetrical and Fn(C) was assumed antisymmetrical about the  or igin.  

are chosen as the  normal modes 

I n  the ac tua l  calculat ions the  e n t i r e  i n f i n i t e  series given i n  
equations (39) and (40) w i l l  be considered, but only a f i n i t e  number of 
t he  cp functions w i l l  be taken in to  account. 

m=1,2,. . . 
7.. 

(4m' + al)Am s i n  mnc - a2(& ')Eln s i n  (" 
n()] + 

e- 

-cl(mn)Am cos mnC + c2B, cos 
m=l, ic 2 2 

L 

. 

J 
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where . 
"1 - 2 (kn)2  + Al a2 = (1 + p)kn a3 = Alto - (1 - 

21 

bl = (1 + p)kn b2 = 2 ( 1  - p )  b3 = (kn)2  + hl 

b4 = (kn)nhlco/2 

c1 = 4 x 2 1 ~ ~  c2 = 2h2knn/co c 3  = 16/n  2 c4 = 4 E ( k n ) 2  c 4 

- 
If the  following in t eg ra l s  a r e  formed (see  appendix C ) ,  

r 

r l  

q = 1 ,  3, 5 ,  . . . 

Galerkin 's  equations can be obtained by s e t t i n g  t h e  t r i p l y  i n f i n i t e  
s e t  of i n t eg ra l s  equal t o  zero: 
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Cons e que nt ly 

In  these  equations m and t take on t h e  values 1, 2, 3, . . ., and 
s and q the  values 1, 3, 5 ,  . . .. The parameters a, p, and 7 
are  defined a s  

4 
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The numerical values of yst 
appendix D. 

needed f o r  ca lcu la t ion  a re  l i s t e d  i n  

Equations (42 ) ,  (43),  and (44)  form a system of l i n e a r  homogeneous 
algebraic  equations, and the  vanishing of t h e i r  determinant y i e lds  t h e  
condition f o r  t he  evaluation of t he  c r i t i c a l  load. 
t he  i n f i n i t e  series given i n  equations (39) t o  (41) represent  a r ig -  
orous so lu t ion  of the  problem if the coef f ic ien ts  of t he  terms are cal-  
cu la ted  from the  i n f i n i t e  s e t  of equations (42) t o  (44) with 
Moreover, a f i n i t e  number of terms gives just a s  good an approximate 
solutiora as the  Rayleigh-Ritz method employing the  same terms. 
t h e  work involved is large.  

It can be shown t h a t  

r -+ 03. 

However, 

For t h i s  reason the  determinant w a s  not evaluated but  t he  coef f i -  
c i e n t s  Am and B, were expressed i n  terms of t he  coe f f i c i en t s  Cm 
from equations (42) and (43) ,  and $hen subs t i tu ted  i n  equation (44) .  
This procedure leads t o  an i n f i n i t e  set of homogeneous equations l i n e a r  
i n  t h e  &. The summations indicated i n  the  equations were ca r r i ed  out 
with t h e  a id  of complex in tegra t ion  as shown i n  appendix E.  

Equation (42) w a s  solved f i r s t  f o r  Am: 
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When t h i s  value i s  inser ted  in to  equation (43) and t h e  summation s igns 
are intercha,nged,l the  following equation is obtained: 

- 2 m 

(4m2 + a,) E?) - m q  K?)' - m j  
- 2 

(4m2+ a$ r(,) - m g  ks4- ( m n ) y  

m 
2 t - 1 2  

03 

With t h e  notat ion 

= (2n - 1 ) / 2  k,, = ks/n 
2 a. = a1/4 to = ( 2 t  - 1)/2 

and u t i l i z i n g  the  summation by complex in tegra t ion  developed i n  a.ppen- 
dix E one obtains: 

na, coth nao 

(ao2 + to2)(ao2 + no') 

when to # no 

when to = no 

~ _. 

'This can be j u s t i f i e d  because of t h e  absolute  convergence of these  
se r i e s .  

-. 
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and 

- + 1 

(8n3) (aO4 - kSo4) 

If these  equations as w e l l  as equa.tion (D9) of appendix D are ta.ken i n t o  
account, equation (46) becomes: 

- p) to2  + 2a07 (to + do2) 
+ 

to(l  + d k n  

a. coth nao ..f (-l)nnoBn + ( - l ) t B t  

' n = l  b o 2  + no2) 

+ 2 
x s=l (aO4 - kSo4) 

where do2 = b3/4. 

. 
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Similarly,  i f  the  value of A, 
i n se r t ed  in to  equation (44) 
t i o n s  (E7) ,  ( E 8 ) ,  and (Eg) of appendix E )  t he  r e s u l t  is: 

a s  given i n  equation (45) i s  
and the  s e r i e s  a re  summed ( s e e  equa- 

03 
a2clcp0111 (1) a. coth aao (- l )nq,Bn 

2f13 aO4 - kO4 5 (Bo2 + no2) 

r 

s=l 
+ c )c - c4 1 CS& = 0 (48) 5 s  2 2  

where 

a. coth X a o  

a,4 - kqO4)' 

ao2 coth xkqo(ao4 - 5k04) 
+ + 

4kq05 ( aO4 - kqo4) 
xqq = C q c p q Y 1 )  

II a 1 

when s = q 

and . 

P 

r a, coth Xao 
+ 

4 - 4 )  (a04 - kSo4 ) s=l  kqo 

when s # q. 

-. 
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If Dn = Bn/3 and the  values of a2 and a3 as previously 
defined are inser ted  i n t o  equation (47), it becomes: 

r 
so coth fiaO tanh fik,, (ao2 + to  + 4 

Yt  s=l 

ao2(ao2 - t o 2 q }  = o  
4> (a0 - kso 4 

By means of equations (48) and (49) it i s  possible  t o  express any 
i n  terms of Dp and a l i n e a r  combination of C, as follows: 

Dt 

(49) 

- (Po2+ bo2) (Po2 + do2) P 
+ bo2) ( to2 + do2) 

t (to = (-1) Dp 
t 0  PO 

(-1) D t  

where bo2 = ao/ p(1 - pfl . 
It can be seen from the  above equations t h a t  Dp i s  of the  order 

of magnitude of l/p3, and p can be chosen very la rge  so  t h a t  

(Po2 + bO2)/(po4 - kSo4) approaches zero, s ince both bo and kso a re  

f i n i t e .  Hence the  above equation may be given as: 
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(-l)PKpDp - 1 t 0  ( -l)t D t  = 
(to2 + bo2)(to2 + do2) 

where 

( Po2 + bo2) (Po2 + do 

P O  
% =  

Now subs t i t u t ion  of Dt 
t = p, makes it possible  t o  express 
of t he  C, terms. Because of equations (E13)  and ( E l ? )  of a.ppendix E 

from equation ( 5 0 )  i n t o  equation (49), with 

Dp i n  terms of l i n e a r  combinations 

and a f t e r  

-i I 
% = - &  x 

r 

f u r t h e r  s impl i f ica t ion  the  f i n a l  equation is: 

I- 2 (1 + p ) ( k n ) 2 ( a z  + do )kso tanh nkso 
d, tanh Jrd, + L 3 k o 4  - kso 4> 

k,, tanh nkso 1 
where 

4 ( 1  - P N p  
K = (-l)p 
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. 

I n  equation (31), i f  t = p is  chosen a very la rge  number, the  l a s t  
t e r m  approaches the  value ao2/(ao 4 - kSo4). Af te r  subs t i t u t ion  of 

t h e  values of a2, a3, and c 1  in to  equation (u), mult ip l ica t ion  by 

(aO4 - k04)/~A1L2cp"t(1~,  and subtract ion of equation (49) ,  with t = p, 

from it t h e  following expression i s  obtained: 

where 

90 1 ao2 + kqo 2 )rrkqo tanh rtkqo - a. 2 
rr + 

4 2kqo s i n  2nk yqq = cqcpq (1) 
4kqo 

when s = q and 

when s # q. 
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Final ly  through subs t i t u t ion  of Dn from equation (51) i n t o  the  
second term of equation (52 ) ,  use of r e l a t i o n s  (E21) t o  (E24) ,  and 
summing up the  s e r i e s  ( see  equations ( E 1 4 ) ,  (E16) ,  and (E20) of 
appendix E )  , the  following system of equations i s  obtained: 

(1 + p)(knl2(ao2 t do2)kso tanh nksJ kso tanh nksol  

f o r  q = 1, 3, 5 ,  . . . r. I n  these  equa.tions 

bo tanh nb, - do tanh 
tanh nd, - do2 - Bo2 

kqo tanh nkqo 
+ ao2) . 

4> (do - kqo 
.I 
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2 2 - - (ao2 + k 90 )nkqo tanh nkqo - a. n when s = q 4- 

90 2kqo s i n  2nk 
4kqO4 

al sq 

2 kso tanh 

tanh xk 

aO - 
Osq - 

(ks,4 - kqo4) 
when s f q 

- +02 + kqo2) (bo2 - kqo2) 
h q  - 

4kqo4(dO2 - kqo2) 

4, do tanh nd, tanh nkqo(dqo + 3kqo 

4kqo3(do4 - kqo4) 1 + 
do4 - kqo4 

(do4 - kQo4) k,, tanh nksA 

when s = q 

-do ta.nh xd, kao tanh nkao 
- b -  - . L  

when s # q 

Equation (53) represents a system of homogeneous l i n e a r  a lgebraic  
equations i n  t h e  constants Cs. By s e t t i n g  the  r th-order  determinant 
equal t o  zero, successive solut ions for the  c r i t i c a l  load for 
r = 1, 3, . . . may be obtained. 
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NUMERICAL EVALUATION OF RESULTS OBTAINED 

BY GALERKIN’S METHOD 

A s  a first approximation, equation (53) w i t h  q = s = 1 and w i t h  
appropriate numerical values of the mode shape constants obtained from 
appendix D may be given as 

do tanh ‘do]} - (1.030314267eO2 - 1.06186907) + 
(do4 - klo4) 

4, {p. ~ 3 : y 4  + (kn)2  + 
3.30609001~ (kn) (aO4 - k10 

v 2  
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where 

+ P I  = x1 

4d0 tanh ndo - (l/bo)(kn)2 tanh nbo 

0.21970224( kn) 

- 
do(ao2 + do2) tanh ndo 

2.153846(bo ta.nh nbo - do ta.nh ndo) 

A1 11 
and 

33 

Calculations using the  above equation were made f o r  t h e  parameters 
r = 39, 
r a t i o  b/h; t he  r e s u l t s  are shown as the  uppermost curve i n  figure 6. 
This so lu t ion  gives the  minimum value of the  buckling stress f a c t o r  
as 1.430. For a second approximation, two equations of t he  type of 
equation (52)  were used with q taken a s  1 and 3 and s as 1 and 3. 
The r e s u l t s  of t he  ca lcu la t ions  were p lo t t ed  i n  the  curve labeled "upper 
bound." The minimum value of C f o r  t h i s  case was  found t o  be 1.405. 
It i s  noted t h a t  both these values are higher than the  first and second 
approximations obtained by the  Leggett method which were a l s o  p lo t t ed  
i n  f igu re  6 f o r  comparison purposes. 
method approach the  true values from below while values obtained from 
t h e  Galerkin method approach them from above. 

R = 0.3, and n = 1 and f o r  various values of t he  aspect 

C 

The values obtained by t h e  Leggett 
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The percentage difference between the minimums of t h e  two f i rs t  
approximations (when r e fe r r ed  t o  t h e  lower value) i s  11 percent,  a.nd 
t h a t  between t h e  two second approximations is  7 percent.  For p r a c t i c a l  
calculat ions t h e  a.rithmetic mean of t he  two second approximat ions can 
be taken a s  the  true value of t h e  c r i t i c a l  s t r e s s  f a c t o r .  In  t h e  case 
j u s t  discussed the  mean is 1.352 and t h e  e r r o r  i s  l e s s  than 3.3 percent 
when t h i s  mean i s  used. 

Table I shows a f e w  sample values of lower and upper bounds and 
a l so  t h e i r  ar i thmetic  means which w i l l  be ca l l ed  the  t r u e  values of 
t he  minimum c r i t i c a l  s t r e s s  f a c t o r  Cmin. A l l  t he  values calculated 
a re  presented i n  f igu re  5. Figure 7 i s  the  p l o t  of  t he  t r u e  values 
which are recommended f o r  use i n  pra.ctica1 ca lcu la t ions .  

NUMERICAL EXAMPLES 

As a f irst  example, t he  buckling load of an aluminum c e l l u l a r  
cel lulose-acetate  sandwich panel i s  calculated with the  a i d  of figure 7. 
The panel was t e s t e d  and reported as  panel (1-1) i n  t a b l e  11 of refer- 
ence 4. In  the  notat ion of t h e  present r epor t ,  the  da ta  of t h e  panel are:  

t = 0.013 inch 

6 L, = 39.82 inches E = 9.9 x 10 p s i  

c = 0.247 inch 

p = 0.3 G, = 3300 p s i  

The following parameters a.re calculated:  

r = c / t  = 19 

F = 1 + 3(1 + r )2  = 1201 

ucr,o = n 2 E t 2 / E ( l  - p2)Lx;?1 = 3.81 P s i  

R = G , / ( F O ~ ~ , ~ )  = 0.764 
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From f igu re  7, t he  value C a i n  is approximately 1.32. Hence according 
t o  equation (30) the  buckling s t r e s s  is:  

and th6  buckling load is 

Ymin = 2(0.013)6040 = 157.0 pounds per  inch 

The t e s t  r e s u l t s  (with 
give buckling loa.ds ranging from 146 t o  176 pounds per  inch. 

Ly = 33.00 i n . )  of the  Forest  Products Labora.tory 

A s  a second example a panel with a balsa  core (panel  1-1, tab le  10, 
refe;.ence 4) i s  considered. The data are:  

t = 0.012 inch c = 0.255 inch 

L, = 39.93 inches 

p = 0.3 

E = 9.9 x 106 p s i  

Gc = l 9 , O O O  p s i  

The following parameters are  calculated: 

r = 21.25 

F = 1486 

(Jcr,o = 3.23 p s i  

R = 3.96 

From f igu re  7, the  value of Cmin is approximately 1.56. Hence the  
buckling s t r e s s  i s  
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and the  buckling load i s  

Ymin = 179.7 pounds per inch 

The test  r e s u l t s  (with 
Products Laboratory range from 164 t o  176 pounds per  inch. 
agreement between the  t h e o r e t i c a l  r e s u l t s  of t he  present inves t iga t ion  
and t h e  r e s u l t s  of experimental tests ca r r i ed  out a t  t h e  Forest  Products 
Laboratory i s  sa t i s f ac to ry .  

5. = 33.02 in . )  a s  obtained by the  Forest  
Hence the  

CONCLUDING REMARKS I 
The d i f f e r e n t i a l  equations developed i n  TN 2225 have been solved 

f o r  t h e  buckling load of rectangular  sandwich panels subJected t o  edge- 
w i s e  compression, Two so lu t ions  were obtained, one by the  Leggett and 
the  other by t h e  Galerkin method. The former gave a lower and the  
l a t t e r  an upper bound f o r  t h e  c r i t i c a l  stress. 
buckling s t r e s s  could be estimated f a i r l y  accura te ly  a s  the  a r i thmet ic  
mean of the two bounds. The m a n  values were p lo t t ed  f o r  t h e  e n t i r e  
p rac t i ca l  range of t he  geometric and physical  constants  involved. 

I n  t h i s  manner the t r u e  

- 
A comparison of r e s u l t s  given i n  TN 2225 with r e s u l t s  given i n  t h i s  

repor t  indicates  t h a t  the difference i n  buckling stress i n  the  region where 
the  sandwich s t i f f n e s s  parameter i s  less than 0.025 and the  r a t i o  of core 
thickness t o  face  thickness  is  l e s s  than 30 i s  negl igible .  These values 
character ize  p l a t e s  w i t h  a very weak core.  For values of e i t h e r  t h e  sand- 
wich s t i f f n e s s  parameter o r  t h e  r a t i o  of core thickness  t o  face thickness  
approaching i n f i n i t y ,  t he  value of the minimum c r i t i c a l  stress f a c t o r  
approaches un i ty  i n  the  simply supported case and 1.745 i n  t he  present 
problem. These values agree with those derived f o r  ordinary i so t rop ic  
t h i n  plates .  

Several numerical examples calculated from the  theory were found t o  
be i n  good agreement w i t h  r e s u l t s  of tests ca r r i ed  out a t  t he  Forest  
Products Laboratory. 

Polytechnic I n s t i t u t e  of Brooklyn 
Brooklyn, N. Y., Apr i l  m, 1950 



NACA TN 2556 37 

APPENDIX A 

BOUNDARY CONDITIONS 

I n  order t o  a sce r t a in  whether successive so lu t ions  obta.ined by 
Legget t ' s  method a.pproach the  buckling stress from above o r  below, the  
boundary conditions must be examined i n  some d e t a i l .  

It ma.y be r eca l l ed  t h a t  Fn( E ) ,  Gn( E ) ,  and Hn( 6 )  as  given by 
equations (23a) ,  (23b) ,  and ( l 5 e )  s a t i s f y  a l l  boundary conditions s t a t e d  
i n  equakions (g), (lo), and (11). 
s ine  s e r i e s ,  t he  boundary conditions of equations 
f i rs t  two of equation (11) are  automatically s a t i s f i e d ,  but whether t h e  
remaining two boundary conditions 

When these  funct ions a re  expanded i n t o  
( 9 )  and (10) and t h e  

a r e  s a t i s f i e d  is not obvious. 
f i rs t  q terms of H,(C) may be expressed as: 

After expanding i n t o  s ine  s e r i e s ,  t he  

and 

Hence from conditions (Al), when 5 = 0,l: 
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and 

Addition and subtract ion of t h e  above equations y ie ld :  

J- 
m=l 

I 
m = l  

Inser t ion of t he  values of A and B from equations (16a) and (16b) 
gives a f t e r  s implif icat ion:  

If both f kA2k and f (2k + 1)A2k+l vanish simultaneously, 
k = l  k=O 

t h e  coef f ic ien ts  A, B,  and C i n  equations (16a) t o  (16~) vanish and 
thus the  boundary conditions a re  not s a t i s f i e d .  If one of t he  two sums 
does not vanish, the  left-hand member of one of equations (A2) and ( A 3 )  
must vanish. However, page 181 of reference 5 shows t h a t :  

n2/6 = f (i /p2) 
p = l  
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p = l  

Consequently equations ( A 2 )  and ( A 3 )  a re  s a t i s f i e d  only if an i n f i n i t e  
number of terms i n  the  s e r i e s  expansion 
Hence t h e  boundary conditions ( A l )  are not s a . t i s f i ed  by a.pproximate 
so lu t ions  which use a f i n i t e  number of harmonics. It follows tha.t the  
boundary conditions a re  relaxed and the c r i t i c a l  s t r e s s e s  approach t h e  
t r u e  values from below ( s e e  reference 6 ) .  

Hn""(E)  a r e  taken i n t o  account. 
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APPENDIX B 

E D U C T I O N  OF RESULTS OBTAINED BY LEGGETT METHOD TO 

A THIN HOMOGENOUS PIATE 

The sa.ndwich p l a t e  is transformed in to  a homogeneous and i so t rop ic  

Consequently equation (25) i s  s impl i f ied  and 
t h i n  p la te  i f  c ----+ 0. When t h i s  is  t h e  case, hl and % as defined 
i n  equations (24)  vanish. 
i n  t he  case of symmetric buckling it can be wr i t t en  i n  the  form 

A s s 4  + (kn)2  [7kn)2 + 2s2 - 4 ks - 1 (0.8105693) (A1 + 
S2 

1 

A 3 + A 5 +  .,1= 0 

where s = 1, 3, 5, . . .. 
Values of the  coe f f i c i en t  X = 16c i n  t h e  formula f o r  t h e  buckling 

stress as obtained from equation ( B l )  a r e  p lo t t ed  i n  figure 8. The f i g -  
ure  a l so  shows Timoshenko's so lu t ion  taken from page 320 of reference 7. 
It i s  noted t h a t  t he  t h i r d  approximation gives a minimum value of 
h = 6.94 
of 6.98. 

which , i s  only about 0.6 percent lower than Timoshenko's value 

The system of equations corresponding t o  unsymmetrical buckling 
gives a higher buckling load f o r  a p l a t e  of aspect r a t i o  grea te r  than 1 
than t h a t  obtained from equation (Bl). 
unsymmetrical buckling can be used conveniently t o  ca l cu la t e  t h e  buckling 
s t r e s s  of a t h i n  p l a t e  clamped a t  one unloaded edge and simply supported 
a t  the  other unloaded edge. With the  nota t ion  

However, t he  equations f o r  

and 

k' = Lx/2Ly = k/2 
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The equation determining t h e  buckling stress can be wr i t t en  as 

6 
AS(s/2l4 + ( k ' 1 1 ) ~ E ( s / 2 ) ~  + (k 'n l2  - X.] [.. - ( 4 2 )  2,* (A2 + 

1 
A 4 + A 6 + .  . .q = O  

where s = 2, 4, 6, . .. .. 

41 

Va.lues of  t h e  coe f f i c i en t  X' = 4.C i n  t he  formula f o r  t he  buckling 
stress as obtained from equa.tion (B3)  a.re p lo t t ed  i n  f igu re  9. 
minimum value of X' i s  approximately 5.32. 

The 
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APPENDIX C 

THE G A I E R K I N  METHOD 

A s  the  d i f f e r e n t i a l  equations (1) t o  (3)  were derived i n  reference 1 
from the  expression f o r  t he  t o t a l  po ten t i a l  by t h e  va r i a t iona l  process, 
they express the  requirements of equilibrium t h a t  t he  forces  corresponding 
t o  t h e  u, v, a.nd w displ8,cements must vanish. The dimension of each 
term i n  the equa.tions is  force  per  area s ince t h e  va r i a t ion  of t he  t o t a l  
po ten t i a l  w a s  divided by the  va r i a t ion  of t he  displacement and by an area. 

If the f i r s t  of t he  three  equa.tions, t he  one obtained by varying 
the  u displacements, is  represented symbolically a s  

Q(u) + R(v) + S(W) = 0 

and an approximate so lu t ion  i s  assumed i n  the  form 

t t  

subs t i t u t ion  of these sums i n  t h e  d i f f e r e n t i a l  equa.tion does not,  as  a. 
r u l e ,  r e s u l t  i n  a vanishing left-ha.nd member. If the  value of t he  l e f t -  
hand member a f t e r  the  subs t i t u t ion  i s  denoted 
e r r o r ,  one may wr i te  

e (x ,y )  t o  designate t h e  
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The e r r o r  e (x ,y ) ,  which i s  a function of t h e  coordinates 
y, represents  the  amount by which t h e  component corresponding t o  

x 
and 
u of t h e  resul ta .nt  of a l l  the  ex terna l  and i n t e r n a l  forces  d i f f e r s  
from zero a t  any point  x,y of the  plate .  If e (x ,y )  were ident i -  
ca.l ly zero, as  required by the condition of equilibrium, the  work done 
by it would va.nish f o r  any a r b i t r a r y  dis2lacement. The equi l ibr ium 
condi t ion can be approximated if t h e  coe f f i c i en t s  aij ,  bij,  and c i j  
of t h e  series are  determined from the  requirement tha.t  t he  work done 
by e(x ,y)  must vanish f o r  a number of v i r t u a l  displacements. A s  
equation ( C l )  expresses the  condition of equilibrium of the  forces  
corresponding t o  t h e  u displacements, any of t he  displacement types 
represented by 

can be chosen as  a v i r t u a l  displacement provided 
t h e  geometric cons t ra in ts .  
is ,  therefore ,  

u i j  does not v io l a t e  
The v i r t u a l  work during t h i s  displacement 

and one condition of equilibrium i s  

w = o  

i n  agreement with the  p r inc ip l e  of v i r t u a l  displacements. 

In the Galerkin process a s  described i n  references 8 and 9, the  
funct ions f and g a re  chosen i n  such a manner t h a t  each product 
f i g j  
of them satisfies the  d i f f e r e n t i a l  equations. Hence uij  i n  equa- 
t i o n  ( C 4 )  i s  a su i t ab le  v i r t u a l  displacement. 
v i r t u a l  work vanish f o r  t h e  r2 displacement pa t te rns  contained i n  
equation (C2a) furnishes ,  therefore  r2 conditions f o r  t h e  determina- 
t i o n  of t he  unknown coef f ic ien ts .  If it i s  fu r the r  s t i pu la t ed  t h a t  t h e  
components of t he  forces  corresponding t o  t h e  v and w displacements 
do zero work during t h e  s2 and t2 v i r t u a l  displacements contained 

s a t i s f i e s  a l l  t he  bounda.ry conditions although, as a rule,  none 

The requirement t h a t  t h e  
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i n  equations (C2b) and ( C ~ C ) ,  respect ively,  a t o t a l  of 
conditions a re  ava i lab le  f o r  t h e  determination of t h e  r2 + s2 + t2 
unknown coef f ic ien ts  i n  equations (C2). 
l i n e a r  equations i n  the  coef f ic ien ts  s ince  equations (1) t o  (3 )  a.re 
l i nea r .  

r2 + s2 + t2 

These conditions form a s e t  of 

When r, s, and t are increased beyond a l l  limits and the  set of 
equations are complete, t h e  v i r t u a l  work va.nishes for any a r b i t r a r y  
displacement and thus the  d i f f e r e n t i a l  equations are s a t i s f i e d  r igorously.  

f i g j  
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ORTHOGONAL FUNCTIONS USED I N  GALERKTN'S METHOD 

I n  t h e  appl ica t ion  of  t h e  Rayleigh-Ritz o r  Galerkin method t o  t h e  
so lu t ion  of buckling problems it is  desirable t o  represent  t he  def lec ted  
shape by a l i n e a r  set of admissible functions: which should preferably 
form a complete system of orthogonal funct ions.  
t he  funct ions H n ( E )  
t i o n  of a uniform beam clamped a t  both ends. 
successful ly  i n  references 10 and 11. 

I n  the  present problem 
can be chosen t o  be the  normal modes of vibra.- 

Such functions were used 

For s impl i c i ty  consider the  beam t o  be of length 2 and clamped a t  
5 = -1 and 1. These functions i n  the normalized form can be wr i t ten  
f o r  an odd number of waves as  

Cp,( k )  = c, cos kmk - cosh &k 

where 

cosh k, 
c, = 

(cos2% + cosh2&) 112 

cos k, 
UI dm = 

(cos2& + cosh2&)1'2 

and &, as determined from the  equation 

t a n  k, + tanh & = 0 

has the  values 

k l  = 2.3650204 

k5 = 8.6394 
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For an even number of waves, t he  normalized funct ions a r e  

'pn = gn s inh  knE - h, s i n  & E  

The meaning of the  symbols i s  

s i n  k, 

s inh  k, 
AI hn = 

(sin2kn + s inh  

and kn, as determined from the  equation 

t a n  % - tanh kn = 0 

has the  values 

k2 = 3.9266 

k4 = 7.0686 

It ca.n be eas i ly  v e r i f i e d  t h a t  

where 

6, = 1 

6, = 0 

NACA TN 2556 

when m = n 

when m # n 
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moreover 

(E)q2n+2(E) dS = 0 m,n = 0, 1, 2, . . . ( D 6 )  

11 1 

Os (1) = (ks tanh ks)cp,"(l) (D9) 

L I n  the  numerical calculat ions the following constants were needed: 

tanh kl = 0.98230295 tanh k3 = 0.99996645 

c p l " ( l )  = 7.8407588 q3"(l) = -42.7448996 

= -2.43256274 '13 Yll = -3.0754792 

= -24.7262334 733 
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APPENDIX E 

NACA T N  2576 

SUMMATION OF SERIES BY COMPIEX INTEGRATION 

The series appearing i n  the  so lu t ion  by Galerkin 's  method can be 
r educed to  the  following two types: 

where a may be r e a l  (nonintegral)  o r  pure imaginary. The sums of 
these se r i e s  can be found with the  aid of complex integrat ion.  

I n  the evaluat ion of t he  f i rs t  s e r i e s  l e t  f ( z )  = 1/ (z2  - a2). The 
two poles of t h i s  function are z = +a with residues of value +(1/2a) .  
Hence, according t o  pages 133 t o  135 of reference 12: 

similarly,  

a f 1 = $(: coth na. - - 
m=l m2 + a 

I n  the evaluat ion of t he  second s e r i e s  l e t  f ( z )  = 1 / ( z 2  - a2)2 
which has two double poles a t  z = fa. 
YI cot  Iczf( z) . The residues a t  z = f a  are 

Now consider t he  funct ion 

21r cot  na 

8a3 2 2  s i n  na 



7E NACA TN 2556 

Hence 

49 

and s i m i l a r l y  
, 

The sum of the  following s e r i e s  can be found by f i r s t  reducing the  
f r a c t i o n  t o  p a r t i a l  f r ac t ions :  

+ 
2 m 

m=l (m2 + ao2) (m' - to2) ("2 - no2) 

2 2 m=l m - no 
t c3 

where 

2n - 1 
to = no - - t , n  = 1, 2, . . . - 2 t  - 1 

2 2 

It can be shown tha t :  

2 a, 
U - c1 - - 

(ao2 + to*)(ao2 + no2) 
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Hence with cot  xt, = cot  xno = 0 

when to # no. 

When to = no the  above p a r t i a l  f r a c t i o n  
modified i n  the  following manner: 

where 
2 

aO c 1  = - 
(ao2 + 

expansion has t o  be 

c2 

n 

c2 = 
a. 2 + t o 2  

c3 = 
(ao2 + 

Because of equations ( E l ) ,  (E2) ,  and (E3)  t he  r e s u l t  i s  

2 xao coth xao m 
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I n  a similar manner: 

a coth nao 0 2 m 
(m2 + a. ')(m2 - t o 2 ) ( m 4  - kso 4, = ' {(ao; + to2)(ao4 - kso4) 

I n  t h e  above expression and i n  expressions where 
r e l a t i o n  previously obtained i n  appendix D, that is, 

k,, appears, t h e  

ta.n nkso -+ tanh nk,, = 0 (D2) 

is  used t o  s implify the  summations as follows: 

-ao coth nao m* ' m = l  (m2 + aO2)(m4 - QO4)(m4 - kSo4) - QO4)(ao4 - kso 

when s f t (E8)  4 
COth nkto 

&02 - 
(kSo4 - ..to4> - .to4> kso(aO - kso 

a. coth nao n + 
bo4 - .to4) 4ktO4(ao2 - .to2) 2 

ao2 coth  nkto(ao4 - 5QO4) n cosec 2 nkto - 

4ktO2(ao4 - ktO4)- 
- 

4kto5(ao4 - k t ~ ~ ) ~  
when s = t (Eg) 
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c 

The following two series can be summed up i n  a. similar manner: 

a coth na  b coth nb + + 
(b2 -a2)(b2 - C 2 )  

2 OD 

Ltl 7 ($+ a2)(m2 +b2)(m2 + c2) m=l - c2) 

c coth xc I 
(c' - a2) ( c2 - b2)_1 

2 IIl pe m=l (m2 +a2)(m2+b2)(m4 -kSo4) a2 - b2) 

a coth xa b coth nb - + 
- (a4 - kSo4) ( b4 - kSo4) 

I 

In  order t o  f i n d  the  sum of the  s e r i e s  

coth nkso(a% 2 + ks2)]} 
kso k4 - kSo4) (b4 - kSo4) 

. 

L t=l (to2 + a0 2, (to2 + bo2)(to2 + do2) 

where to = ( 2 t  - 1)/2, l e t  5 = 2 t  - 1, so  t h a t  

?? 
t o 2  = 16 f 2 ( to2+a02)( t02+b02)( t02+ do2) '6=1,3,5, ... + (pao)  + (2b0) '1 [p + (2%) '3 

4 
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Now consider: 

53 

- In2 2 m 

m=1,3,5,. . . m2+b2)(m2+ c2)  =E (m2+a2)(m2+b2)(m2+i2) 

- A a 1 b 
- - ' c .2  42) ( ,2  - c 2 )  (coth 2 (b2- a2)(b2- c2)  

2 
1 
2 

IIC - - COth - 1 C - coth 
2 e) + (c2 - a2)(c2 - b2) 

1 b tanh ( ~ b / 2 )  
+ + 

(b2 - a2)(b2 - c2) 

c tanh (fic/2) 

a2 - b2) (a2 - c2) (c2 - a2)(c2 - b2) 
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Hence 

a. tanh Kao 
to2  + f t=l (to2 + ao2)(to2 + bo2)(to2 + do2) ao2 - bo2) (ao2 - do2) 

1 bo tanh fib, do tanh nd, 

(do2 - ao2) (do2 - bo2 
+ 

(bo2 - a0 2)(bo2 - do2) 

observing tha t  

and inser t ing these values in to  equation (E12) one obtains 

= -  to2  f t=l (to2 + ao2)(to2 + bo2)(to2 + do2) (1 

tanh nbo 4do tanh nd, - 
kl 1 

Similarly: 

kso(ao2 + do2) tanh nk,, 

bo4 - kso4)(do4 - kS04) - 1 
1 (ao tanh xao 
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which can be wri t ten a s  

- 
4 

- 4n - t o 2  00 

& (to2 + ao2)(to2 + dO2)(to4 - kSo4) (1 + p)(kn)2 

55 

+ 

do3 tanh nd, kS0 tanh nks, (bo2~2 + k,, 

- ks04)) - (bo4 - k,, 4)(d04 - ks04) 

The following sums can be evaluated i n  a similar manner: 

rn ,3 c 

tanh nd, - to= g (tz+ do2)( to4 - k,, 4)(t,4 - ktO4) = ' 1 (do4 - ksO4)(do4 - .to4) 

when s # t 
4> 1 k,, tanh nkso kt0 tardl nkto - 

(do4 - kso4)(kSo4 - ktO4) (do4 - ktO4)(kto4 - k,, 

do tanh nd, n tanh nkto(do4 + 3GO4) + + =BE (do4 - ktO4I2 4ktO4 (do2 - kto2) 4kt03(do4 - ktO4 

1 n sec 2 nkto 

4kto2(%4 - .to4) 
when s = t (~18) 
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1 ndo2 se c2 nlqo 

4kto2(do4 - ktO4) 
when s = t (E20) 

t 

It may be added here tha.t i n  deriving equation (C22) from equa- 
tion (C21), t he  following re la t ions  were needed: d 

Eao4 - (1 - p)$ 0 + (1 + p)ao2b02 = (1 - p)  (bo4 - .to4) (E=) 
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2 I 

EDGES X- 0, X =  L, ARE FIXED 

EDGES y -  0 ,  y - L ARE SIMPLY SUPPORTED Y 

Figure 1.- Sandwich p l a t e .  (Thicknesses a r e  exaggerated.) 
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SECTION B-B 

SECTION A - A  

Figure 2.- Displacements i n  plane of  p l a t e .  
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SECTION 8 - B  

x +s3- - _  

SECTION A - A  

Figure 3.- Displacements out of plane of p l a t e .  (Thicknesses a re  
exaggerated. ) 
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I .  7 / 
/ 

/ 
r = 3 9 ;  R = o . ~ ;  n = i  /' 

' 1.8 

/ 
/' FIRST APPROXtMATION - - - - 

Figure 6.- Upper and lower bounds of c r i t i c a l  s t r e s s  factor for 
r = 39 and R = 0 .3 .  
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I I \ ISECOND APPROXIMATION--------- 

Figure 8.- C r i t i c a l  s t r e s s  factor  f o r  a t h i n  p l a t e  loaded as shown. 

c 
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6 .0  
FIRST APPROXIMATION-- - ---I 

Figure  9.- C r i t i c a l  stress f a c t o r  f o r  a t h i n  p l a t e  loaded as shown. 


